Long-time Three-dimensional Core-Collapse Supernova Simulations

Annop Wongwathanarat

Ewald Müller

Hans-Thomas Janka

Victor Utrobin

Michael Gabler

The Progenitor-Supernova-Remnant Connection

Max-Planck-Institut für Astrophysik

Astrophysical Big Bang Laboratory

Predictions of Signals from Supernovae

Figure from Janka et al. (2012)

Numerics

Explore several progenitors, varying expl. energies

	progenitor	3D	explosion	time	Eexp	$\operatorname{avg}_{(\min)}^{(\max)} R_{\mathrm{s}}$	$M_{\rm Ni} \left(M_{{\rm Ni}+X} \right)$	v _{max} (Ni)	< v >1% (Ni)	
	type	model	model	[s]	[B]	[10 ⁶ km]	$[M_{\odot}]$	$[10^3 \mathrm{km s^{-1}}]$	$[10^3 \mathrm{km}\mathrm{s}^{-1}]$	
	RSG	W15-1-cw	W15-1	84974	1.48	$389_{(355)}^{(443)}$	0.05 (0.13)	5.29	3.72	
		W15-2-cw	W15-2	85408	1.47	393 ⁽⁴⁵⁸⁾ (349)	0.05 (0.14)	4.20	3.47	
		L15-1-cw	L15-1	95659	1.75	478 ⁽⁵³⁰⁾ (448)	0.03 (0.15)	4.78	3.90	
		L15-2-cw	L15-2	76915	2.75	475 ⁽⁵⁰⁰⁾ (458)	0.04 (0.21)	5.01	4.51	
	BSG	N20-4-cw	N20-4	5589	1.65	$39.7^{(43.6)}_{(35.6)}$	0.04 (0.12)	2.23	1.95	
		B15-1-cw	B15-1	5372	2.56	$41.5^{(43.6)}_{(39.5)}$	0.05 (0.11)	6.25	5.01	
		B15-1-pw	B15-1	7258	1.39	$42.7^{(45.7)}_{(40.0)}$	0.03 (0.09)	3.34	3.17	
p [g/cm³]		B15-3-pw	B15-3	8202	1.14	$48.1_{(44.7)}^{(51.1)}$	0.03 (0.08)	3.18	2.95	
	10^{10}						10		W15 L15 N20 B15	
	0			5	Encl	osed mass	10 [м_]		15	
						0000 11000				

Shock dynamics

shock propagates according to blast wave solution (Sedov, 1959)

accelerates when pr³ decreases, and vice versa

Kifonidis+ 2003

Explore several progenitors, varying expl. energies

	progenitor	3D	explosion	time	Eexp	$\operatorname{avg}_{(\min)}^{(\max)} R_{\mathrm{s}}$	$M_{\rm Ni} \left(M_{{\rm Ni}+X} \right)$	v _{max} (Ni)	< v >1% (Ni)	
	type	model	model	[s]	[B]	[10 ⁶ km]	$[M_{\odot}]$	$[10^3 \mathrm{km s^{-1}}]$	$[10^3 \mathrm{km}\mathrm{s}^{-1}]$	
	RSG	W15-1-cw	W15-1	84974	1.48	$389_{(355)}^{(443)}$	0.05 (0.13)	5.29	3.72	
		W15-2-cw	W15-2	85408	1.47	393 ⁽⁴⁵⁸⁾ (349)	0.05 (0.14)	4.20	3.47	
		L15-1-cw	L15-1	95659	1.75	478 ⁽⁵³⁰⁾ (448)	0.03 (0.15)	4.78	3.90	
		L15-2-cw	L15-2	76915	2.75	475 ⁽⁵⁰⁰⁾ (458)	0.04 (0.21)	5.01	4.51	
	BSG	N20-4-cw	N20-4	5589	1.65	$39.7^{(43.6)}_{(35.6)}$	0.04 (0.12)	2.23	1.95	
		B15-1-cw	B15-1	5372	2.56	$41.5^{(43.6)}_{(39.5)}$	0.05 (0.11)	6.25	5.01	
		B15-1-pw	B15-1	7258	1.39	$42.7^{(45.7)}_{(40.0)}$	0.03 (0.09)	3.34	3.17	
<i>p</i> [g/cm ³]		B15-3-pw	B15-3	8202	1.14	$48.1_{(44.7)}^{(51.1)}$	0.03 (0.08)	3.18	2.95	
	10^{10}						10		W15 L15 N20 B15	
	0			5	Encl	osed mass	10 [м_]		15	
						0000 11000				

SN1987A

3 more progenitors coming soon

Woosley et al. (1988)

Woosley (2007)

~ 3700 km/s

< 2000 km/s

Type IIb model

85408 s

1<u>e13 cm</u>

1.1

-0.37

Without thick H-envelope we retain larger scale asymmetries from the explosion

Type IIb model

Similarities in 4 orientation of three 2 large Fe plumes in 0 our model and 0 observations from -4 Cas A -6 -8 More Fe opposite to

NS kick

Grefenstette et al. (2014)

Type IIb model

W15-IIb

3D interactive visualization

Apsara: A multidimensional unsplit fourth-order explicit Eulerian hydrodynamics code for arbitrary curvilinear grids

A. Wongwathanarat, H. Grimm-Strele, and E. Müller

(figure from wikipedia)

An Apsara is a female spirit of the clouds and water in Hindu mythology. Apsaras are said to be able to change their shape at will.

Mapped grid technique

Non-uniform grid in physical space is mapped to equidistant Cartesian grid in computational space

Gresho vortex

APSARA can capture lowmach number flows better

Single block circular domain

Low quality grid cells along diagonals

Mapped multi-block grid

High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids

P. McCorquodale^{a,*}, M.R. Dorr^b, J.A.F. Hittinger^b, P. Colella^a

^a Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail Stop 50A1148, Berkeley, CA 94720, USA

^b Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-561, Livermore, CA 94551-0808, USA

Conclusion

- 3D models from explosion to shock breakout now feasible
- evolution of early-time asymmetries associated with explosion mechanism depends on complex interplays between the asymmetries and the SN shock
- SN shock dynamics connects to the density structure of the progenitor star
- Density structure of He shell and He/H interface are very important in determining the fate of heavy clumps

How apsaras were born ??

This watermarked comp image is for previewing purposes only

Ceremony to obtain the nectar of immortality

Suvarnabhumi international airport, Bangkok

Dreamstime.com This watermarked comp image is for previewing purposes only.

💿 Edward Karaa | Dreamstime.com

