A Unifying Explosion Condition for Core-Collapse Supernovae

Jeremiah W. Murphy (FSU) Quintin Mabanta (FSU) Joshua C. Dolence (LANL)

How do massive stars end their lives?

How do massive stars end their lives? T Which stars actually explode?

Constraining the Progenitor Masses of 100 Core-Collapse Supernova Remnants Mariangelly Díaz-Rodríguez

Jeremiah W. Murphy Benjamin F. Williams Julianne J. Dalcanton Zachary G. Jennings David A. Rubin

An Alternate Technique: Age date the Stellar Population

Gogarten et al. 2009

An Alternate Technique: Age date the Stellar Population

Gogarten et al. 2009

Jennings et. al. 2014

Supernova Remnants as SN Tracers

- Detectable for $\sim 10^4$ yrs
- Lots of SNRs in nearby galaxies with archival data
 √~100 in M31
 ✓ Up to 65 in M33

Increase the number of progenitors by a factor of 10

SFH and Ages of SNRs

But sometimes....

Stacked Distribution of 100 SNRs

 M_{max} (M_{\odot})

 M_{min} (M_{\odot})

З

 α

 M_{min} (M_{\odot})

З

<u>Caveats</u>:

- SNR Catalogs are biased tracers of CCSNe
- Still exploring best models for Bayesian inference
- We assumed single-star evolution

Coming Soon...Hundreds more SNR progenitor masses from M83

How do massive stars end their lives?

A Unifying Explosion Condition for Core-Collapse Supernovae

Jeremiah W. Murphy (FSU) Quintin Mabanta (FSU) Joshua C. Dolence (LANL)

Numerical simulations are important

..., but we need to augment this tool with another approach

Analytic Explosion Conditions

- Some progress
- \checkmark A deep understanding of why stars explode
- Better quantify why some simulations

explode and others fail.

• Predict which stars will explode and which won't

Physics	Measured Effect	My Best Guess	Refs.
Neutrino-driven Convections	30%		Murphy & Burrows 2008, Mabanta & Murphy 2017
Progenitor Structure		<i>©</i> (1)	Sukhbold et al. 2016
SASI		≲ 30%	Hanke et al. 2013, Fernández et al. 2014, Fernández 2015
GR		~ 10%	Marek et al. 2009, Müller 2012, Roberts et al. 2016
EOS		~ 10%	Couch 2012
many-body corrections to <i>v</i> -nucleon scattering		~ 5%	Horowitz et al. 2017, Burrows et al. 2106
Progenitor Perturbations		~ 1-10%	Couch 2013, Müller & Janka 2015
v-transport		3-50 %	Richers et al. 2017

Analytic Explosion Conditions

- A deep understanding of why stars explode
- Better quantify why some simulations explode and others fail.
- Predict which stars will explode and which won't

Toward Analytic Explosion Conditions

• Empirical

• O'conor & Ott 2011, Ertl 2016

• Heuristic

- e.g. Heating and advection time scales
- First Principles (kind of...)
 - Burrows & Goshy 1993, Pejcha & Thompson 2012, Müller 2016, Murphy & Dolence 2017

Toward Analytic Explosion Conditions

Murphy & Dolence 2017 Mabanta & Murphy 2017

Fundamental Question of Core-Collapse Theory

Stalled Shock

Murphy et al. 2013

Primary Result of Last Three Decades

1D simulations rarely explode, yet multi-D simulations often do.

Why?

Murphy et al. 2013

Let's assume that the delayedneutrino mechanism works

What are the conditions for explosion?

Burrows & Goshy '93 Steady-state solution (ODE)

M

Murphy & Burrows '08

2D & 3D critical luminosity lower than 1D

Turbulence plays an important role, but how was not clear.

Murphy & Burrows 2008 Murphy & Meakin 2012 Burrows, Dolence, and Murphy 2012 Murphy, Burrows, and Dolence 2013 Dolence, Burrows, and Murphy 2013 Couch & Ott 2015 Radice et al. 2015

. М

First...

An Integral Condition for Explosion (Murphy & Dolence 2017)

So what is Ψ_{\min} ?

Let's start with two assumptions: 1. $v_s \ge 0$ is the condition for explosion 2. Integral condition will be illuminating

$$\frac{d^2x}{dt^2} = \frac{f}{m} \quad \text{or} \quad \frac{1}{2}v^2 + \phi = \text{const.}$$

Will use $v_s \ge 0$ to derive an integral condition for explosion.

Governing Conservation Equations

Integrate conservation equations... an expression that relates integral condition to boundaries In steady state...

$A_s(\rho_1 - \rho_2)v_s = F_1A_1 - F_2A_2 + \int S \, dV$ $v_s \ge 0$

Integral terms in momentum equation ρν2 7P ρg ram pressure $r_{\rm NS}^2 P_{\rm NS} + 2 \int Pr \, dr$ $-\int GM\rho\,dr$ $r_s^2 \rho_\perp$

A measure of post shock pressure pushing against ram pressure of inflating star Integral terms with boundary terms gives...

$v_s \ge 0 \to \Psi \ge 0$

Need solutions to these terms. Semi-analytic...similar to Burrows & Goshy.

Use Ψ_{\min} to evaluate nearness-to-explosion in 1D simulations

 $\Psi_{min} = 0$ defines a hyper-surface in a five dimensional space (L_v,T_v,R_{NS},M_{NS},M)

below this hyper-surface $v_s = 0$ solutions

above this hyper-surface $v_s > 0$ (explosions)

Now, let's use this condition to understand how turbulence affects this condition

Mabanta & Murphy 2017

 x_s

Quantify distance to $\Psi_{\min}=0$ surface Metrics, Geodesics, Constrained by Progenitor Path L_{ν} [10^{52} erg/s] ΤU 8 6 4 20 -2

 $\Psi_{\min}(L_{\nu,}T_{\nu},R_{NS},M_{NS},\dot{M}) = 0$ defines a hypersurface in a five dimensional space.

Found this curve semi-analytically.

With a few simple assumptions, we can *derive* this curve analytically. Murphy, Mabanta, & Dolence, in prep.

Physics	Measured Effect	My Best Guess	Refs.
Neutrino-driven Convections	30%		Murphy & Burrows 2008, Mabanta & Murphy 2017
Progenitor Structure		<i>©</i> (1)	Sukhbold et al. 2016
SASI		≲ 30%	Hanke et al. 2013, Fernández et al. 2014, Fernández 2015
GR		~ 10%	Marek et al. 2009, Müller 2012, Roberts et al. 2016
EOS		~ 10%	Couch 2012
many-body corrections to <i>v</i> -nucleon scattering		~ 5%	Horowitz et al. 2017, Burrows et al. 2106
Progenitor Perturbations		~ 1-10%	Couch 2013, Müller & Janka 2015
v-transport		3-50 %	Richers et al. 2017

Summary of our results:

- Critical hyper surface
- Step closer to showing that solutions above critical condition are explosive
- Nearness-to-explosion for Simulations
- Use it to explain reduction in critical condition
- Let's try quantify the other important effects