Pulsational Pair-instability Supernovae

Shing-Chi Leung, Ken'ichi Nomoto Kavli IPMU, The University of Tokyo

with collaborations of Sergei Blinnikov (ITEP), Ming-Chung Chu (CUHK)

A talk for the Ringberg Workshop on the progenitor-supernova-remnant connection

Gustav Mahler and Komponierhäuschen (Steinbach am Attersee)

Figures: Wikipedia

Background

The extreme mass ejection of Eta Carinae has drawn us the attentions to the possibility of pulsational pair-instability supernovae

Initial mass: 100-200 Msun

1837: the Great eruption (10-20 Msun)

1890: the Small eruption (0.1 Msun)

Hubble Space Telescope

The puzzle of Eta Carinae

For a massive star with considerable mass loss, what is its evolution before-18 its collapse?

- **The mass loss composition as a** function of (M, Z, Ω)
- The interaction of ejected mass
- □ The pre-collapse configuration
- Prediction of its collapse timing
- Multi-messenger signals

Recent progress (in 1D)

Woosley (2017) has presented the first systematic study of PPISN using the Kepler code, the pulsation history and light curves are studied.

Recent progress (in 2D)

(Chen et al., 2014)

Matching the pre-pulsation model from stellar evolution code to multi-D hydrodynamics code

 RT instabilities in the form of density-fingers

One-dimensional stellar evolution + hydrodynamics code Modules for Experiment in Stellar Astrophysics

(Paxton et al., 2011, 2013, 2015)

Dynamical prescription

The use of the fully conservative scheme (Grott 2005)

The simulation of non-linear stellar pulsations

M. Grott,^{1*} S. Chernigovski^{2,3} and W. Glatzel¹

¹Universitäts-Sternwarte Göttingen, Geismarlandstraße 11, D-37083 Göttingen, Germany
 ²Institut für Analysis und Numerik, Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
 ³Institut für Strömungstechnik und Thermodynamik, Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany

Accepted 2005 April 22. Received 2005 April 22; in original form 2004 December 15

The energy conserving implicit scheme

From Paxton (2015)

$$\frac{1/\rho_k - 1/\rho_{\text{start},k}}{\delta t} = \frac{1}{dm_k} (A_k \hat{v}_k - A_{k+1} \hat{v}_{k+1}), \quad (27)$$

where

$$\hat{v}_k = (v_k + v_{\text{start},k})/2 \tag{28}$$

and r_k is evaluated as

$$r_k = r_{\text{start},k} + \hat{v}_k \delta t. \tag{29}$$

Algebraic simplification then shows that

$$A_{k} = \frac{4\pi}{3} \left(r_{k}^{2} + r_{k} r_{\text{start},k} + r_{\text{start},k}^{2} \right).$$
(30)

Fully energy conservation scheme

After updating for one step, only the boundary terms and source terms matter

$$(E_{\text{final}} - E_{\text{initial}}) / \delta t = - (L_{\text{surface}} - L_{\text{center}}) - (L_{\text{acoustic, surface}} - L_{\text{acoustic, center}}) + \sum_{k} (\epsilon_{\text{nuc},k} - \epsilon_{\nu,k} + \epsilon_{\text{extra},k}) dm_{k}.$$

$$(52)$$

The algorithm conserves energy naturally, thus guaranteeing that the solution describes the same system as the initial one

Qualitative Picture of PPISN

Typical thermodynamics (He = 50Msun)

Hydrodynamics (He60, 1st pulse)

The whole star heats up during contraction

Velocity evolution (He60, 1st pulse)

Chemical composition (He60, 1st pulse)

Pulsation

 $\log_{10} T_{c} \, (K), \log_{10} \rho_{c} \, (g \ cm^{-3})$

against time for M(He) = 40, 50and 60 solar mass

Mass loss history

Let us examine the He60 model and see how the mass loss occurs before its collapse.

Pulse 1: 10 Msun, Pulse 2: 38 Msun

Neutrino pattern (He40 model)

Effects of rotation (Z = 0.002)

Progenitor mass (solar mass)

Conclusion

We have presented progenitor models of pulsational pair instability supernovae (before its collapse) using MESA

> Thermodynamics and hydrodynamics

- Mass loss histories
- ➤ Neutrino signals
- We examined the effects of
- ➤ Metallicity
- \succ Rotation

to the progenitor models

