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SNRs as a key link between stars and the ISM
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Fig. 4. HESS γ-ray image of SN 1006. The linear colour scale is in units
of excess counts per π × (0.05◦)2. Points within (0.05◦)2 are correlated.
The white cross indicates the geometrical centre of the SNR obtained
from XMM data as explained in the text and the dashed circles cor-
respond to R ± dR as derived from the fit. The white star shows the
centre of the circle encompassing the whole X-ray emission as derived
by Rothenflug et al. (2004) and the white triangle the centre derived by
Cassam-Chenaï et al. (2008) from Hα data. The white contours corre-
spond to a constant X-ray intensity as derived from the XMM-Newton
flux map and smoothed to the HESS point spread function, enclosing
respectively 80%, 60%, 40% and 20% of the X-ray emission. The inset
shows the HESS PSF using an integration radius of 0.05◦.

Fig. 5. Radial profile around the centre of the SNR obtained from HESS
data and XMM-Newton data in the 2–4.5 keV energy band smoothed to
HESS PSF.

centred on −143.6◦ ± 6.1◦ (SW region) and 29.3◦ ± 4.0◦ (NE
region) and with similar widths of 33.8◦ ± 7.0◦and 27.9◦ ± 4.0◦.

4. Spectral analysis

Differential energy spectra of the VHE γ-ray emission were de-
rived for both regions above the energy threshold of ∼260 GeV.
These regions correspond to 80% of the X-ray emission (after
smearing with the HESS PSF) and therefore slightly underesti-
mate the TeV emission of the full remnant.

Fig. 6. Azimuthal profile obtained from HESS data and XMM-Newton
data in the 2–4.5 keV energy band and smoothed to HESS PSF, re-
stricted to radii 0.12◦ ≤ r ≤ 0.36◦ from the centre of the SNR. Azimuth
0◦ corresponds to East, 90◦ corresponds to North, 180◦ to West and
−90◦ to South.

Fig. 7. Differential energy spectra of SN 1006 extracted from the two
regions NE and SW as defined in Sect. 2. The shaded bands correspond
to the range of the power-law fit, taking into account statistical errors.

Table 2. Fit results for power-law fits to the energy spectra.

Region Photon index Γ Φ(>1 TeV)
(10−12 cm−2 s−1)

NE 2.35 ± 0.14stat ± 0.2syst 0.233 ± 0.043stat ± 0.047syst
SW 2.29 ± 0.18stat ± 0.2syst 0.155 ± 0.037stat ± 0.031syst

The spectra for the NE and SW regions are compatible with
power law distributions, F(E) ∝ E−Γ, with comparable photon
indices Γ and fluxes. Confidence bands for power-law fits are
shown in Fig. 7 and Table 2. The integral fluxes above 1 TeV
correspond to less than 1% of the Crab flux, making SN 1006
one of the faintest known VHE sources (Table 2). The derived
fluxes are well below the previously published HESS upper lim-
its (Aharonian et al. 2005). The observed photon index Γ ≈ 2.3 is
somewhat steeper than generally expected from diffusive shock
acceleration theory and may indicate that the upper cut-off of the
high-energy particle distribution is being observed; however, the
uncertainties on the spectrum preclude definitive conclusions on
this point.
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SNR broad-band emission 

reviews (at high energies): Reynolds 2008, Vink 2012
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back-reaction:  
varying gamma 

SNR evolution: 
3D hydro code 
ramses

SNR initialization:  
self-similar profiles  

from Chevalier

particle acceleration: 
non-linear model  

of Blasi

shock  
diagnostics

Teyssier 2002,  
Fraschetti et al 2010

Blasi et al  
2002, 2004, 2005 

+ Caprioli 2008, 2009

Chevalier 1982, 1983

Numerical simulations: hydro + kinetic

Ellison et al 
2007

Ferrand et al 2010  
(A&A 509 L10)

slice of log(density)

parameters: Tycho (SN Ia)

tSN = 440 years
ESN = 1051 erg
n = 7 , Mej = 1.4 M�
s = 0 , nH,ISM = 0.1 cm�3
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Thermal emission

�I =

Z t

tS

n(t0).dt0

Thermal emission in each cell depends on: 
• plasma density  
• electron temperature      
  progressive equilibration  
  with protons temperature 
  via Coulomb interactions 
• ionization states 
  computation of non-equilibrium ionization  
  with the exponentiation method 

All these parameters depend  
on the history of the material  
after it was shocked. 

n2
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Ferrand, Decourchelle, 
Safi-Harb 2012

test particle vs. back-reaction
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Non-thermal emission

Non-thermal emission in each cell depends on: 
• pion decay: plasma density  
• synchrotron: magnetic field      
 (amplified at the shock, then frozen in the flow) 
• Compton: ambient photon fields (CMB) 

Note: the acceleration model gives the CR spectra  
just behind the shock 
they must be transported to account for losses: 

• adiabatic decompression 

• radiative losses

fp(p, x, t) , fe(p, x, t)
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Ferrand, Decourchelle, 
Safi-Harb 2014
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simulations                                           observations

Energetic protons, 
accelerated at the 
shock front, don’t 
radiate as efficiently 
as electrons, however: 

1/ they impact the 
dynamics of the shock 
wave, and therefore 
the thermal 
emission from the 
shell (optical, X-rays) 

2/ they impact the 
evolution of the 
magnetic field,  
and therefore the 
non-thermal 
emission from the 
electrons (radio – X-
rays – γ-rays)

Thermal + non-thermal emission in X-rays1.4



Two historical remnants

multi-wavelength composite: 
X-rays (Chandra 1-2 keV and 4-6 keV) 
optical (Calar Alto) 
infrared (Spitzer)

multi-wavelength composite: 
X-rays (Chandra 0.5-2.5 keV and 4-6 keV) 
near IR (Hubble) 
infrared (Spitzer)

age: ∼440 yr 
distance: 1.7-5 kpc 
size: 8’ ∼5-12 pc

age: ∼330 yr 
distance: 3.3-3.7 kpc 

size: 5’ ∼5-7 pc

Tycho’s SNR 
SN 1572 

thermonuclear

Cas A SNR 
(missed SN) 
core-collapse
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   The two types of supernovae and their remnants
explosion 

SN type
thermonuclear 

Ia
core-collapse 

II, Ib/c

energy 
ejected mass 
ejecta profile 

ambient density profile 
3D morphology 

ambient magnetic field

1051 erg = 1044 J 

1.4 solar masses 
steep power-law ∝r 

-7 

uniform ISM ∝r 
0 

usually simple 

uniform ≈ few µG

1051 erg = 1044 J 

a few solar masses 
steeper power-law ∝r 

-9 

stellar wind ∝r 
-2 

often complex 

(uncertain)

q = 
density, 
velocity, 
pressure

Chevalier 1982
self-similar profiles
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CC SNR vs TN SNR: density

core-collapse 
supernova 

type II in the 
progenitor’s wind 

n=9, s=2 
(t = 300 yr)

test particle back-reactionFerrand and 
Safi-Harb 

2016

thermo-nuclear 
supernova 

type Ia in a 
uniform ISM 
n=7, s=0 

(t = 500 yr)
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Safi-Harb 

2016
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supernova 
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uniform ISM 
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(t = 500 yr)

CC SNR vs TN SNR: thermal X-rays1.8



From the supernova  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3D SNR simulations

What can the SNR tell us about the explosion?

Röpke 2007, Seitenzahl et al 2013

3D simulations of thermonuclear supernovae

?

From the 3D supernova to the 3D remnant2.1



Simulating a TN SN: initial conditions

initial flame configuration? grid of ignition patterns Seitenzahl et al 2013
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Simulating a TN SN: hydro 3D evolution

Seitenzahl et al 2013

propagation of the flame? 
interaction with turbulence 
(sub-grid modeling)

deflagration or detonation?  
most popular model = 
transition from deflagration to 
detonation (DDT)
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Simulating a TN SN: nucleosynthesis

tracer particles for N100 model

Seitenzahl et al 2013

nuclear reaction network in 
post-processing 

with 384 nuclides 
→ distribution of elements 

many still unstable: 
radioactive decay
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SN Ia explosion model

data from Seitenzahl et al 2013 courtesy Fritz Röpke

iso-contours  
 

on Sketchfab 
https://skfb.ly/

6pKYW

N100 model – delayed detonation of a Chandrasekhar mass white dwarf
total mass density composition: 56Ni 16O 12C

volume 
rendering  

 
(custom-made, 

live demo)
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3D immersive visualization (Virtual Reality)2.6



First results for the SNR (hydro) PRELIMINARY

t = 1 yr, 2 yr, 5 yr, 10 yr, 20 yr, 50 yr, 100 yr, 200 yr, 300 yr, 400 yr, 500 yr

Chevalier 1D  
(power-law)

Röpke 1D  
(~exponential)

Röpke 3D  

density slices
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First results for the SNR (hydro) PRELIMINARY

t = 1 yr t = 500 yrt = 100 yr

density 
slice

density 
projection
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Röpke 3D



To be continued…


