Hunting for Primordial Non-Gaussianity

Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008

What is fal?

- For a pedagogical introduction to f_{NL}, see
 Komatsu, astro-ph/0206039
- In one sentence: "f_{NL} is a **quantitative** measure of the magnitude of primordial non-Gaussianity in curvature perturbations.*"

^{*} where a positive curvature perturbation gives a negative CMB anisotropy in the Sachs-Wolfe limit

Why is Non-Gaussianity Important?

- Because a detection of f_{NL} has a best chance of ruling out the largest class of early universe models.
- Namely, it will rule out inflation models based upon
 - a single scalar field with
 - the canonical kinetic term that
 - rolled down a smooth scalar potential slowly, and
 - was initially in the Banch-Davies vacuum.
- Detection of non-Gaussianity would be a major breakthrough in cosmology.

We have r and n_s . Why Bother?

- While the current limit on the power-law index of the primordial power spectrum, **n**_s, and the amplitude of gravitational waves, **r**, have ruled out many inflation models already, many still survive (which is a good thing!)
- A convincing detection of f_{NL} would rule out most of them regardless of n_s or r.
- f_{NL} offers more ways to test various early universe models!

What if $f_{NL} /= 0$?

- A single field, canonical kinetic term, slow-roll, and/or Banch-Davies vacuum, must be modified.
 - Multi-field (curvaton)
 - Non-canonical kinetic term (k-inflation, DBI)
 - Temporary fast roll (features in potential; Ekpyrotic fast roll)
 - Departures from the Banch-Davies vacuum
- It will give us a lot of clues as to what the correct early universe models should look like.

So, what is fal?

- f_{NL} = the amplitude of three-point function, or also known as the "bispectrum," $B(k_1,k_2,k_3)$, which is
 - $=<\Phi(k_1)\Phi(k_2)\Phi(k_3)>=f_{NL}^{(i)}(2\pi)^3\delta^3(k_1+k_2+k_3)b^{(i)}(k_1,k_2,k_3)$
 - where $\Phi(k)$ is the Fourier transform of the curvature perturbation, and $b(k_1,k_2,k_3)$ is a model-dependent function that defines the shape of triangles predicted by various models.

Why Bispectrum?

- The bispectrum <u>vanishes</u> for Gaussian random fluctuations.
- Any non-zero detection of the bispectrum indicates the presence of (some kind of) non-Gaussianity.
- A very sensitive tool for finding non-Gaussianity.

Komatsu & Spergel (2001); Babich, Creminelli & Zaldarriaga (2004)

Two fnl's

- Depending upon the shape of triangles, one can define various f_{NL}'s:
- "Local" form
 - which generates non-Gaussianity locally (i.e., at the same location) via $\Phi(x) = \Phi_{gaus}(x) + f_{NL}^{local}[\Phi_{gaus}(x)]^2$
- "Equilateral" form <

Earlier work on the local form:
Salopek&Bond (1990); Gangui et al. (1994);
Verde et al. (2000); Wang&Kamionkowski (2000)

 which generates non-Gaussianity in a different way (e.g., k-inflation, DBI inflation)

Forms of b(k₁,k₂,k₃)

- Local form (Komatsu & Spergel 2001)
 - $b^{local}(k_1,k_2,k_3) = 2[P(k_1)P(k_2)+cyc.]$
- Equilateral form (Babich, Creminelli & Zaldarriaga 2004)
 - $b^{\text{equilateral}}(k_1,k_2,k_3) = 6\{-[P(k_1)P(k_2)+\text{cyc.}]$ - $2[P(k_1)P(k_2)P(k_3)]^{2/3} +$ $[P(k_1)^{1/3}P(k_2)^{2/3}P(k_3)+\text{cyc.}]\}$

Journal on f_NL

Local

- -3500 < f_{NL}local < 2000 [COBE 4yr, I_{max}=20] Komatsu et al. (2002)
- $-58 < f_{NL}^{local} < 134 [WMAP lyr, l_{max}=265]$ Komatsu et al. (2003)
- $-54 < f_{NL}^{local} < 114 [WMAP 3yr, I_{max}=350]$ Spergel et al. (2007)
- -9 < f_{NL}local < | | | [WMAP 5yr, I_{max}=500] Komatsu et al. (2008)

Equilateral

- -366 < f_{NL} equil < 238 [WMAP lyr, l_{max}=405] Creminelli et al. (2006)
- -256 < f_{NL} equil < 332 [WMAP 3yr, I_{max}=475] Creminelli et al. (2007)
- -151 < f_{NL}equil < 253 [WMAP 5yr, I_{max}=700] ¹⁰ Komatsu et al. (2008)

Methodology

- I am not going to bother you too much with methodology...
 - Please read Appendix A of Komatsu et al., if you are interested in details.
- We use a well-established method developed over the years by: Komatsu, Spergel & Wandelt (2005); Creminelli et al. (2006); Yadav, Komatsu & Wandelt (2007)
 - There is still a room for improvement (Smith & Zaldarriaga 2006)

Data Combination

- We mainly use V band (61 GHz) and W band (94 GHz) data.
 - The results from Q band (41 GHz) are discrepant, probably due to a stronger foreground contamination
- These are foreground-reduced maps, delivered on the LAMBDA archive.
 - We also give the results from the raw maps.

Mask

- We have upgraded the Galaxy masks.
 - lyr and 3yr release
 - "Kp0" mask for Gaussianity tests (76.5%)
 - "Kp2" mask for the C_I analysis (84.6%)
 - 5yr release
 - "KQ75" mask for Gaussianity tests (71.8%)
 - "KQ85" mask for the Clanalysis (81.7%)

- What are the KQx masks?
 - The previous KpN masks identified the bright region in the K band data, which are contaminated mostly by the synchrotron emission, and masked them.
 - "p" stands for "plus," and N represents the brightness level above which the pixels are masked.
 - The new KQx masks identify the bright region in the K band minus the CMB map from Internal Linear Combination (the CMB picture that you always see), as well as the bright region in the Q band minus ILC.
 - Q band traces the free-free emission better than K.
 - x represents a fraction of the sky retained in K or Q. 14

Gold et al. (2008)

Why KQ75?

- The KQ75 mask removes the pixels that are contaminated by the free-free region better than the Kp0 mask.
- CMB was absent when the mask was defined, as the masked was defined by the K (or Q) band map minus the CMB map from ILC.
- The final mask is a combination of the K mask (which retains 75% of the sky) and the Q mask (which also retains 75%). Since Q masks the region that is not masked by K, the final KQ75 mask retains less than 75% of the sky. (It retains 71.8% of the sky for cosmology.)

Main Result (Local)

Band	Mask	$l_{ m max}$	$f_{NL}^{ m local}$	$\Delta f_{NL}^{ m local}$	b_{src}
$\overline{V+W}$	KQ85	400	50 ± 29	1 ± 2	0.26 ± 1.5
V+W	KQ85	500	61 ± 26	2.5 ± 1.5	0.05 ± 0.50
V+W	KQ85	600	68 ± 31	3 ± 2	0.53 ± 0.28
V+W	KQ85	700	67 ± 31	3.5 ± 2	0.34 ± 0.20
V+W	Kp0	500	61 ± 26	2.5 ± 1.5	
V+W	$KQ75p1^a$	500	53 ± 28	4 ± 2	
V+W	KQ75	400	47 ± 32	3 ± 2	-0.50 ± 1.7
V+W	KQ75	500	55 ± 30	4 ± 2	0.15 ± 0.51
V+W	KQ75	600	61 ± 36	4 ± 2	0.53 ± 0.30
V+W	KQ75	700	58 ± 36	5 ± 2	0.38 ± 0.21

- ~ 2 sigma "hint": f_{NL}local ~ 60 +/- 30 (68% CL)
- 1.8 sigma for KQ75; 2.3 sigma for KQ85 & Kp0

Komatsu et al. (2008)

Main Result (Local)

Band	Mask	$l_{ m max}$	$f_{NL}^{ m local}$	$\Delta f_{NL}^{ m local}$	b_{src}
V+W	KQ85	400	50 ± 29	1 ± 2	0.26 ± 1.5
V+W	$K \check{Q} 85$	500	61 ± 26	2.5 ± 1.5	0.05 ± 0.50
V+W	KQ85	600	68 ± 31	3 ± 2	0.53 ± 0.28
V+W	KQ85	700	67 ± 31	3.5 ± 2	0.34 ± 0.20
V+W	$Kp\theta$	500	61 ± 26	2.5 ± 1.5	
V+W	$KQ75p1^a$	500	53 ± 28	4 ± 2	
V+W	KQ75	400	47 ± 32	3 ± 2	-0.50 ± 1.7
V+W	KQ75	500	55 ± 30	4 ± 2	0.15 ± 0.51
V+W	KQ75	600	61 ± 36	4 ± 2	0.53 ± 0.30
V+W	KQ75	700	58 ± 36	5 ± 2	0.38 ± 0.21

• The results are not sensitive to the maximum multipoles used in the analysis, I_{max}.

Main Result (Local)

Band	Mask	$l_{ m max}$	$f_{NL}^{ m local}$	$\Delta f_{NL}^{ m local}$	b_{src}
V+W	KQ85	400	50 ± 29	1 ± 2	0.26 ± 1.5
V+W	KQ85	500	61 ± 26	2.5 ± 1.5	0.05 ± 0.50
V+W	KQ85	600	68 ± 31	3 ± 2	0.53 ± 0.28
V+W	KQ85	700	67 ± 31	3.5 ± 2	0.34 ± 0.20
V+W	$Kp\theta$	500	61 ± 26	2.5 ± 1.5	
V+W	$KQ75p1^a$	500	53 ± 28	4 ± 2	
V+W	KQ75	400	47 ± 32	3 ± 2	-0.50 ± 1.7
V+W	KQ75	500	55 ± 30	4 ± 2	0.15 ± 0.51
V+W	KQ75	600	61 ± 36	4 ± 2	0.53 ± 0.30
V+W	KQ75	700	58 ± 36	5 ± 2	0.38 ± 0.21

• The estimated contamination from the point sources is small, if any. (Likely overestimated by a factor of ~ 2 .) 20

Null Tests

Band	Foreground	Mask	$f_{NL}^{ m local}$
$_{ m V-W}$	Raw Raw	$KQ75 \ KQ75$	-0.53 ± 0.22 -0.31 ± 0.23
$\stackrel{\mathbf{\dot{Q}}-\mathbf{\dot{W}}}{\mathbf{V}-\mathbf{W}}$	Clean	KQ75 $KQ75$	0.01 ± 0.23 0.10 ± 0.23

No signal in the difference of cleaned maps.

Frequency Dependence

Band	Foreground	Mask	$f_{NL}^{ m local}$
V	Raw	KQ75 $KQ75$	-42 ± 48 41 ± 35
Q	Raw Clean	KQ75 $KQ75$	46 ± 35 10 ± 48
W	Clean Clean	KQ75 $KQ75$	50 ± 35 62 ± 35

• Q is very sensitive to the foreground cleaning.

V+W: Raw vs Clean (I_{max}=500)

Band	Foreground	Mask	$f_{NL}^{ m local}$
V+W	Raw	KQ85	9 ± 26
V+W	Raw	Kp0	48 ± 26
V+W	Raw	KQ75p1	41 ± 28
V+W	Raw	KQ75	43 ± 30

Clean-map results:

- KQ85; 61 +/- 26
- Kp0; 61 +/- 26
- KQ75pI; 53 +/- 28
- KQ75; 55 +/- 30

Foreground contamination is not too severe.

The Kp0 and KQ85 results may be as clean as the KQ75 results.

Our Best Estimate

- Why not using Kp0 or KQ85 results, which have a higher statistical significance?
- Given the profound implications and impact of non-zero f_{NL}^{local} , we have chosen a conservative limit from the KQ75 with the point source correction (Δf_{NL}^{local} =4, which is also conservative) as our best estimate.
 - The 68% limit: $f_{NL}^{local} = 51 + /- 30$ [1.7 sigma]
 - The 95% limit: -9 < f_{NL}local < 111

Comparison with Y&W

- Yadav and Wandelt used the raw V+W map from the 3year data.
 - 3yr: $f_{NL}^{local} = 68 + /- 30$ for $l_{max} = 450 \& Kp0$ mask
 - 3yr: $f_{NL}^{local} = 80 + /- 30$ for $l_{max} = 550 \& Kp0$ mask
- Our corresponding 5-year raw map estimate is
 - 5yr: $f_{NL}^{local} = 48 + /- 26$ for $l_{max} = 500 \& Kp0$ mask
 - C.f. clean-map estimate: $f_{NL}^{local} = 61 + /- 26$
- With more years of observations, the values have come down to a lower significance.

Main Result (Equilateral)

Band	Mask	l_{\max}	$f_{NL}^{ m equil}$	$\Delta f_{NL}^{\rm equil}$
V+W	KQ75	400	77 ± 146	9 ± 7
V+W	KQ75	500	78 ± 125	14 ± 6
V+W	KQ75	600	71 ± 108	27 ± 5
V+W	KQ75	700	73 ± 101	22 ± 4

- The point-source correction is much larger for the equilateral configurations.
- Our best estimate from $I_{max}=700$:
 - The 68% limit: $f_{NL}^{equil} = 51 + /- 101$
 - The 95% limit: $-151 < f_{NL}^{equil} < 253$

Forecasting 9-year Data

- The WMAP 5-year data do not show any evidence for the presence of f_{NL}^{equil} , but do show a (~2-sigma) hint for f_{NL}^{local} .
- Our best estimate is probably on the conservative side, but our analysis clearly indicates that more data are required to claim a firm evidence for $f_{NL}^{local}>0$.
- The 9-year error on f_{NL}^{local} should reach $\Delta f_{NL}^{local} = 1.7$
 - If f_{NL}local~50, we would see it at 3 sigma by 2011.

(The WMAP 9-year survey, **recently funded**, will be complete in August 2010.)

Minkowski Functionals (MFs)

MFs from WMAP 5-Year Data (V+W)

Result from a single resolution (N_{side}=128; 28 arcmin pixel) [analysis done by Al Kogut]

$$f_{NL}^{local} = -57 + /-60 (68\% CL)$$

$$-178 < f_{NL}^{local} < 64 (95\% CL)$$

Cf. Hikage et al. (2008) 3-year analysis using all the resolution: $f_{NL}^{local} = -22 + /-43 (68\% CL)$ $-108 < f_{NL}^{local} < 64 (95\% CL)$

15

10

5

-2

0

Threshold υ

"Tension?"

- It is premature to worry about this, but it is a little bit bothering to see that the bispectrum prefers a positive value, f_{NL}~60, whereas the Minkowski functionals prefer a negative value, f_{NL}~-60.
- These values are derived from the same data!
- What do the Minkowski functionals actually measure?

Analytical formulae of MFs

Perturbative formulae of MFs (Matsubara 2003)

$$V_{k}(\mathbf{v}) = \frac{1}{(2\pi)^{(k+1)/2}} \frac{\omega_{2}}{\omega_{2-k}\omega_{k}} \left(\frac{\sigma_{1}}{\sqrt{2}\sigma_{0}} \right)^{\frac{1}{k}} e^{-\mathbf{v}^{2}/2} \{H_{k-1}(\mathbf{v})\}$$

$$+ \left[\frac{1}{6} S^{(0)} H_{k+2}(\mathbf{v}) + \frac{k}{3} S^{(1)} H_{k}(\mathbf{v}) + \frac{k(k-1)}{6} S^{(2)} H_{k-2}(\mathbf{v}) \right] \sigma_{0} + O(\sigma_{0}^{2})$$

leading order of Non-Gaussian term
$$\sigma_j^2 = \frac{1}{4} \sum_{l} (2l+1) [l(l+1)]^j C_l W_l^2 \qquad W_l : \text{smoothing kernel}$$

$$\omega_0 = 1, \omega_1 = 1, \omega_2 = \pi, \omega_3 = 4\pi/3 \qquad H_k : k \text{ th Hermite polynomial}$$

$$S^{(a)} : \text{skewness parameters } (a = 0,1,2)$$

In weakly non-Gaussian fields (σ_0 <<1), the non-Gaussianity in MFs is characterized by three skewness parameters S^(a).

3 "Skewness Parameters"

Ordinary skewness

$$S^{(0)} \equiv \frac{\langle f^3 \rangle}{\sigma_0^4},$$

Second derivative

$$S^{(1)} \equiv -\frac{3}{4} \frac{\langle f^2(\nabla^2 f) \rangle}{\sigma_0^2 \sigma_1^2},$$

• (First derivative)² x Second derivative

$$S^{(2)} \equiv -\frac{3d}{2(d-1)} \frac{\langle (\nabla f) \cdot (\nabla f)(\nabla^2 f) \rangle}{\sigma_1^4},$$

$$S^{(0)} = \frac{3}{2\pi\sigma_0^4} \sum_{2 \le l_1 \le l_2 \le l_3} I_{l_1 l_2 l_3}^2 b_{l_1 l_2 l_3} W_{l_1} W_{l_2} W_{l_3}, \tag{2}$$

$$S^{(1)} = \frac{3}{8\pi\sigma_0^2\sigma_1^2} \sum_{2 \le l_1 \le l_2 \le l_3} [l_1(l_1+1) + l_2(l_2+1) + l_3(l_3+1)] \times I_{l_1 l_2 l_3}^2 b_{l_1 l_2 l_3} W_{l_1} W_{l_2} W_{l_3}, \tag{2}$$

$$S^{(2)} = \frac{3}{4\pi\sigma_1^4} \sum_{2 \le l_1 \le l_2 \le l_3} \{ [l_1(l_1+1) + l_2(l_2+1) - l_3(l_3+1)]$$

 $\times l_3(l_3+1) + (\text{cyc.}) I_{l_1 l_2 l_3}^2 b_{l_1 l_2 l_3} W_{l_1} W_{l_2} W_{l_3},$

S⁽⁰⁾: Simple average of b₁₁₁₂₁₃

S⁽¹⁾: I² weighted average

S⁽²⁾: I⁴ weighted average

Analytical predictions of bispectrum at $f_{NL}=100$ (Komatsu & Spergel 2001)

Comparison of analytical formulae with Non-Gaussian simulations

Comparison of MFs between analytical predictions and non-Gaussian simulations with f_{NL} =100 at different Gaussian smoothing scales, θ_s

Simulations are done for WMAP.

Analytical formulae agree with non-Gaussian simulations very well.

Application of the Minkowski Functionals

- The skewness parameters are the direct observables from the Minkowski functionals.
- The skewness parameters can be calculated directly from the bispectrum.
- It can be applied to any form of the bispectrum!
 - –Statistical power is weaker than the full bispectrum, but the application can be broader than the bispectrum estimator that is tailored for a very specific form of non-Gaussianity.

An Opportunity?

- This apparent "tension" should be taken as an opportunity to investigate the other statistical tools, such the Minkowski functionals, wavelets, etc., in the context of primordial non-Gaussianity.
- It is plausible that various statistical tools can be written in terms of the sum of the bispectrum with various weights, in the limit of weak non-Gaussianity.
- Different tools are sensitive to different forms of non-Gaussianity this is an advantage.

Systematics!

- Why use different statistical tools, when we know that the bispectrum gives us the maximum sensitivity?
- Systematics! Systematics!! Systematics!!!
- I don't believe any detections, until different statistical tools give the same answer.
 - That's why it bothers me to see that the bispectrum and the Minkowski functionals give different answers at the moment.

Summary

- The best estimates of primordial non-Gaussian parameters from the bispectrum analysis of the WMAP 5-year data are
 - $-9 < f_{NL}^{local} < 111 (95\% CL)$
 - $-151 < f_{NL}^{equil} < 253 (95\% CL)$
- 9-year data are required to test f_{NL}local ~ 60!
- The other statistical tools should be explored more.
 - E.g., estimate the skewness parameters directly from the Minkowski functionals to find the source of "tension"

Future Prospects

• Future is always bright, right?

Gaussianity vs Flatness: Future

- Flatness will never beat Gaussianity.
 - -In 5-10 years, we will know flatness to 0.1% level.
 - In 5-10 years, we will know **Gaussianity** to 0.01% level ($f_{NL}\sim10$), or even to 0.005% level ($f_{NL}\sim5$), at 95% CL.
- However, a real potential of Gaussianity test is that we might detect something at this level (multi-field, curvaton, DBI, ghost cond., new ekpyrotic...)
 - -Or, we might detect curvature first?
 - -Is 0.1% curvature interesting/motivated?

Beyond Bispectrum: Trispectrum of Primordial Perturbations

- Trispectrum is the Fourier transform of four-point correlation function.
- Trispectrum(k₁,k₂,k₃,k₄)

$$=<\Phi(k_1)\Phi(k_2)\Phi(k_3)\Phi(k_4)>$$

which can be sensitive to the higher-order terms:

$$\Phi(\boldsymbol{x}) = \Phi_{L}(\boldsymbol{x}) + f_{NL} \left[\Phi_{L}^{2}(\boldsymbol{x}) - \langle \Phi_{L}^{2}(\boldsymbol{x}) \rangle \right] + f_{2}\Phi_{L}^{3}(\boldsymbol{x})$$

Measuring Trispectrum

- It's pretty painful to measure all the quadrilateral configurations.
 - -Measurements from the COBE 4-year data (Komatsu 2001; Kunz et al. 2001)
- Only limited configurations measured from the WMAP 3-year data
 - -Spergel et al. (2007)
- •No evidence for non-Gaussianity, but f_{NL} has not been constrained by the trispectrum yet. (Work to do.)

Trispectrum: Not useful for WMAP, but maybe useful for Planck, if f_{NL} is greater than ~50: Excellent Cross-check!

More On Future Prospects

- CMB: Planck (temperature + polarization): Δf_{NL}(local)=6
 (95%)
 - -Yadav, Komatsu & Wandelt (2007)
- Large-scale Structure: e.g., ADEPT, CIP: Δf_{NL} (local)=7 (95%); Δf_{NL} (equilateral)=90 (95%)
 - -Sefusatti & Komatsu (2007)
- CMB and LSS are independent. By combining these two constraints, we get $\Delta f_{NL}(local)=4.5$.

New, Powerful Probe of f_{NL}!

- f_{NL} modifies the galaxy bias with a unique scale dependence
 - -Dalal et al.; Matarrese & Verde
 - -Mcdonald; Afshordi & Tolley
- The statistical power of this method is promising!
 - -SDSS: $-29 < f_{NL} < 70 (95\%CL)$; Slosar et al.
 - -Comparable to the WMAP limit already (-9 < f_{NL} < 111)
 - -Combined limit (SDSS+WMAP):

Where Should We Be Going?

- Explore different statistics (both CMB and LSS)
 - -Minkowski functionals, trispectrum, and others

- Go for the large-scale structure
 - —The large-scale structure of the Universe at high redshifts offers a definitive cross-check for the presence of primordial non-Gaussianity.
 - –If CMB sees primoridial non-Gaussianity, the same non-Gaussianity must also be seen by the large-scale structure!