Exercise sheet 4

Exercise 4-1

Consider the potential $V(\vec{r})$ which is symmetric with respect to the radial distance $r=|\vec{r}|$,

$$
\begin{equation*}
V(r)=a \sqrt{r}+b \tag{1}
\end{equation*}
$$

This potential is parametrized by the unknown numbers $a, b \in \mathbb{R}$ and can be measured at strictly positive radii, i.e., $r>0$. Furthermore, only a single data point $d \in \mathbb{R}$ can be obtained,

$$
\begin{equation*}
d=V(r)+n \tag{2}
\end{equation*}
$$

where the noise n is assumed to obey a Gaussian statistic $\mathcal{P}(n)=\mathcal{G}(n, N)$. The noise variance $N=N(r)$, however, depends on the measurement position,

$$
\begin{equation*}
N(r)=r^{2}+3 \tag{3}
\end{equation*}
$$

a) Find an expression for the information entropy $S[\mathcal{P}(s \mid d)]$ for a Gaussian posterior

$$
\begin{equation*}
\mathcal{P}(s \mid d)=\mathcal{G}(s-m, D) \tag{4}
\end{equation*}
$$

with mean m and covariance D (2 points).
b) Consider the signal $s=\binom{a}{b}$, for which a Gaussian prior $\mathcal{P}(s)=\mathcal{G}(s, \mathbb{1})$ can be assumed. points)

- Write Eq. (2) in the form $d=R s+n$ and give R explicitly.
- Work out an expression for the joint probability $\mathcal{P}(d, s)$ and calculate the corresponding Hamiltonian $H(d, s)=-\log \mathcal{P}(d, s)=\frac{1}{2} s^{\dagger} D^{-1} s-j^{\dagger} s+H_{0}$. You may drop H_{0}.
- Identify the information source j and the inverse information propagator D^{-1}.
c) You verified in a) that information entropy $S=S(D)$ is a monotonically increasing function of $|D|$. Find the best position \tilde{r} to estimate both, a and b, by minimizing $|D|$ from \mathbf{b}) with respect to r (1 point).
d) Now, consider the signal $s=a$ for which b becomes a nuisance parameter. (1 point)
- Work out an expression for the joint probability $\mathcal{P}(d, a)$, and calculate the corresponding Hamiltonian $H(d, a)=-\log \mathcal{P}(d, a)=\frac{1}{2} D^{-1} a^{2}-j a+H_{0}$. You may drop H_{0}.
- Identify the information source j and the information propagator D.
e) Find the best position \tilde{r}_{a} to estimate a irrespectively of b, by minimizing D from d) with respect to r (1 point).
f) Guess at which radius \tilde{r}_{b} one should measure in order to obtain the most certain estimate for the parameter b. No justification required (1 point).

Exercise 4-2

It was shown in the lecture that for arbitrary signal-, noise-, and data-statistics with known correlations $\left\langle s s^{\dagger}\right\rangle_{(s, d)},\left\langle d s^{\dagger}\right\rangle_{(s, d)}$, and $\left\langle d d^{\dagger}\right\rangle_{(s, d)}$, the optimal linear filter is given by

$$
\begin{equation*}
m=\left\langle s d^{\dagger}\right\rangle_{(s, d)}\left\langle d d^{\dagger}\right\rangle_{(s, d)}^{-1} d \tag{5}
\end{equation*}
$$

A linear response matrix R and a noise covariance matrix N can be defined via the following identifications:

$$
\begin{align*}
\left\langle s s^{\dagger}\right\rangle_{(s, d)} & \equiv S \tag{6}\\
\left\langle d s^{\dagger}\right\rangle_{(s, d)} & \equiv R S \tag{7}\\
\left\langle d d^{\dagger}\right\rangle_{(s, d)} & \equiv R S R^{\dagger}+N \tag{8}
\end{align*}
$$

Find expressions for R and N in terms of $\left\langle s s^{\dagger}\right\rangle_{(s, d)},\left\langle d s^{\dagger}\right\rangle_{(s, d)}$, and $\left\langle d d^{\dagger}\right\rangle_{(s, d)}(2$ points $)$.

Exercise 4-3

You are interested in three numbers, $s=\left(s_{1}, s_{2}, s_{3}\right) \in \mathbb{R}^{3}$. Your measurement device, however, only measures three differences between the numbers, according to

$$
\begin{align*}
d_{1} & =s_{1}-s_{2}+n_{1} \tag{9}\\
d_{2} & =s_{2}-s_{3}+n_{2} \tag{10}\\
d_{3} & =s_{3}-s_{1}+n_{3} \tag{11}
\end{align*}
$$

with some noise vector $n \in \mathbb{R}^{3}$. Assume a Gaussian prior $\mathcal{P}(s)=\mathcal{G}(s, S)$ for s and a Gaussian PDF for the noise, $\mathcal{P}(n)=\mathcal{G}(n, N)$, with $N_{i j}=\sigma^{2} \delta_{i j}$.
a) Assume that the prior is degenerate, i.e., $S^{-1} \equiv 0$. Write down the response matrix, try to give the posterior $\mathcal{P}(s \mid d)$, and explain why this is problematic (2 points).
b) Now assume that $S_{i j}=\sigma^{2} \delta_{i j}$. Work out the posterior $\mathcal{P}(s \mid d)$ in this case (1 point).

Note: Using a computer algebra system, e.g., SAGE (http://www.sagemath.org/), for the matrix operations is okay.

Exercise 4-4

You have conducted a measurement of a quantity at n positions $\left\{x_{i}\right\}_{i}$, yielding n data points $\left\{\left(x_{i}, d_{i}\right)\right\}_{i}$. Now you want to fit some function to these data points. To this end, you write the function as a linear combination of m basis functions $\left\{f_{j}(x)\right\}_{j}$, i.e.,

$$
\begin{equation*}
f(x)=\sum_{j=1}^{m} s_{j} f_{j}(x) \tag{12}
\end{equation*}
$$

If, for example, you were to fit a second order polynomial, you could choose the monomials as basis functions, i.e., $f(x)=s_{2} x^{2}+s_{1} x+s_{0}$.
The fitting process now comes down to determining the coefficients $\left\{s_{j}\right\}_{j}$, allowing for some Gaussian and independent measurement error, i.e.,

$$
\begin{equation*}
d_{i}=\sum_{j=1}^{m} s_{j} f_{j}\left(x_{i}\right)+n_{i} \tag{13}
\end{equation*}
$$

Assume that you do not know anything about the coefficients a priori, i.e., $S^{-1} \equiv 0$, where $S_{i k}=$ $\left\langle s_{i} s_{k}\right\rangle_{\mathcal{P}(s)}$.
a) Write down the response matrix for this problem (1 point).
b) For a given set of m basis functions, how many data points n are at least necessary for the calculation of the posterior mean of the coefficients (2 points)?
c) Now let's make a linear fit. Assuming $N_{i k}=\left\langle n_{i} n_{k}\right\rangle_{\mathcal{P}(n)}=\eta^{-1} \delta_{i k}$, choose two basis functions and work out the explicit formula for the posterior mean of the two coefficients (3 points).

Exercise 4-5

Assume that a quantity y is linearly dependent on a quantity x, i.e., $y(x)=a+b x$. Assume further that the quantity y has been measured at $m-1$ different positions $\left(x_{i}\right)_{i}, i=1, \ldots, m-1$, subject to additive uncorrelated Gaussian noise, i.e.,

$$
\begin{equation*}
d_{i}=y\left(x_{i}\right)+n_{i}, \quad n \hookleftarrow \mathcal{G}(n, N), \quad N_{i j}=\delta_{i j} \sigma_{i}^{2} \tag{14}
\end{equation*}
$$

Assuming a Gaussian prior for the parameters a and b, i.e.,

$$
s=\binom{a}{b} \hookleftarrow \mathcal{G}(s, S), \quad S=\left(\begin{array}{cc}
A & 0 \tag{15}\\
0 & B
\end{array}\right)
$$

a linear fit can be performed using Wiener filter theory.
You have enough money left to finance one additional measurement with uncertainty σ_{m}. How should you choose the position x_{m} for that measurement to gain optimal knowledge about the parameter a ?
 Here, m_{a} is the Wiener filter estimate after the m measurements (4 points).

This exercise sheet will be discussed during the exercises.
Group 01, Wednesday 18:00-20:00, Theresienstr. 37, A 449,
Group 02, Thursday, 10:00-12:00, Theresienstr. 37, A 249,
https://wwwmpa.mpa-garching.mpg.de/ ensslin/lectures/lectures.html

