Exercise sheet 2

Exercise 2-1

Assume that loosing a fraction x of your budget hits you as $l(x)=x /(1-x)$, being your personal loss function.
a) Up to which fraction $y<x<1$ of your budget should you invest to insure against the risk of losing the budget fraction $x=x_{E}$ by an event E occurring with probability $p=P(E)$ (2 points) ?
b) An insurance company asks you to pay a budget fraction $z=\alpha p x$ to insure your loss under E with $\alpha>1$ (to ensure that the company makes profit on average). Under which conditions should you take their offer (1 point)?
c) Show that a tiny monetary loss $x \ll 1$ should never be insured (1 point).
d) The insurance company knows the true p_{E} perfectly well, whereas the beliefs of its customers on it are uniformly distributed in $p \in[0,1]$ What is the expected profit per potential costumer as a function of the insurance price z (2 points) ?

Exercise 2-2

Imagine you wanted to store a probability distribution $P(x)$ over two events $x \in\{0,1\}$ on a computer with very limited memory and precision. Of course it is enough to store only $P(0)$ since $P(1)$ can then be calculated through normalization, but you still have to round the numbers up to machine precision. Let X be the set of all numbers the computer can represent. Furthermore, let

$$
\begin{aligned}
q_{\text {low }} & =\max \{q \mid q \in X \wedge q \leq P(0)\} \\
\text { and } q_{\text {high }} & =\min \{q \mid q \in X \wedge q \geq P(0)\}
\end{aligned}
$$

i.e., $q_{\text {low }}$ the highest number in X that is still lower than $P(0)$ and $q_{\text {high }}$ the lowest number in X that is still higher than $P(0)$.
a) Derive a decision rule for when to round to $q_{\text {low }}$ or $q_{\text {high }}$ for general $P(0)$, $q_{\text {low }}$ and $q_{\text {high }}$ based on the rule that you want to lose the least amount of information from the original distribution $P(x)$. (2 points)
b) Using the decision rule derived in a), determine wether it is better to round

- $P(1)=0.146$ to 0.1 or 0.2
- $P(1)=0.01$ to 0 or 0.5 ?
(1 point)

Exercise 2-3

A sequence of n coin tosses is performed and stored in a data vector $d^{(n)}=\left(d_{1}, \ldots d_{n}\right) \in\{0,1\}^{n}$. The coin produced a head (denoted by a 1 in the data vector) with constant, but unknown frequency $f=P\left(d_{i}=1 \mid f\right) \in[0,1]$.
a) How many bits of extra information on f are provided by the data vector $d^{(n)}=(1, \ldots 1)$ of only ones?

Information Field Theory

Summer term 2024
PD Dr. Torsten Enßlin Vishal Johnson, Ming Huang

Hint: The extra information contained in a probability distribution $p(x)$ compared to a probability distribution $q(x)$ (in bits) is given by $\int \mathrm{d} x p(x) \log _{2}\left(\frac{p(x)}{q(x)}\right)$. Furthermore you may use the following integral formulas: $\int_{0}^{1} d x x^{n}(1-x)^{m}=\frac{n!m!}{(n+m+1)!}$ for $n, m \in \mathbb{N}, \int_{0}^{1} d x x^{n} \ln x=-\frac{1}{(n+1)^{2}} \quad$ (2 points)
b) After how many such sequential heads did one obtain 10 bits of information on f ? An accuracy of 10% is sufficient.

Hint: If $n>10$ you can use $\frac{n}{n+1} \approx 1$. Use $2^{1 / \ln 2}=2^{\ln e / \ln 2}=2^{\log _{2} e}=e \approx 2.7$. (1 point)
c) How many bits on the outcome of the next toss is provided by a sequence of n heads? Provide also the asymptotic for $n \rightarrow \infty$!

Hint: It is helpful to guess the maximal amount of obtainable information before the detailed calculation is done. (2 points)

This exercise sheet will be discussed during the exercises.
Group 01, Wednesday 18:00-20:00, Theresienstr. 37, A 449,
Group 02, Thursday, 10:00-12:00, Theresienstr. 37, A 249,
https://wwwmpa.mpa-garching.mpg.de/ ensslin/lectures/lectures.html

