

Information Theory

a short lecture

PD Dr. Torsten Enßlin MPI for Astrophysics LMU Munich

1. From Logic to Probability

Cox theorem (1946)

1.1 Aristotelian logic

A and B be statements or propositions e.g. A = "it rains", B = "there is a cloud" *I* background information I = "if A is true, then B is also true" = " $A \Rightarrow B$ " e.g. I = "it rains only if there is a cloud" deduction = syllogism strong syllogism: $I \Rightarrow$ "if *B* is false then *A* is false" = ($\overline{B} \Rightarrow \overline{A}$) e.g. $I \Rightarrow$ "no cloud \rightarrow no rain" weak syllogism: $I \Rightarrow$ "if B (is true) then A is more plausible" = J e.g. $I \Rightarrow$ "a cloud \rightarrow maybe rain" = J weaker syllogism: e.g. $J \Rightarrow$ "rain \rightarrow maybe a cloud" $J \Rightarrow$ "if A, then B becomes more plausible"

1.2 Boolean Algebra

Boolean operations on statements A and B

- "and": AB = "both, A and B are true" conjunction or logical product
- "or": A + B = "at least one of the propositions A, B is true" disjunction or logical sum
- "identity": "A = B" = "A always has the same truth value as B" logical equivalence
- "denial": A

 "not A" = "A is false"
 negation or logical complement
 A = "A is false", "A=A" is always false

Notation:

•
$$AB + C = (AB) + C$$

• $\overline{AB} = \overline{(AB)} = "AB$ is false"

Axioms of Boolean Algebra

idempotency:	AA = A	
	A + A = A	
commutativity:	AB = BA	
	A + B = B + A	
associativity:	A(BC) = (AB)C = ABC	
	A + (B + C) = (A + B) + C = A + B + C	
distributivity:	A(B+C) = AB + AC	
	A + (BC) = (A + B)(A + C) (*)	
duality:	$\overline{AB} = \overline{A} + \overline{B}$	
	$\overline{A+B} = \overline{A}\overline{B}$	
implication:	" $A \Rightarrow B$ " \equiv " $A = AB$ " $=$ "A and AB have the same truth value"	
	$(A \Rightarrow B) = ($ "it rains" is as true as "it rains and there is a cloud")	
axiom set is over-complete, <i>e.g.</i> 2^{nd} distrib. (*) follows from other axioms:		
$\overline{A} + \overline{B} \overline{C} \stackrel{\text{duality}}{=} \overline{A} +$	$\overline{B+C} \stackrel{\text{duality}}{=} \overline{A(B+C)} \stackrel{1^{\text{st}}}{\underset{\text{distr.}}{=}} \overline{AB+AC} \stackrel{\text{duality}}{=} \overline{AB}\overline{AC} \stackrel{\text{duality}}{=} (\overline{A}+\overline{B})(\overline{A}+\overline{C})$	
$\overline{A} ightarrow A', \overline{B} ightarrow B', \overline{C} ightarrow C' \Rightarrow (*)$		

1.3 Plausible Reasoning

Aim: extend binary logic to continous plausible reasoning Notation: $\pi(A|B)$ = plausibility π of "A given B"

= "conditional plausibility that *A* is true, given that *B* is true"

1.3.1 Desiderata

- I Degrees of plausibility are represented by real numbers.
- II Qualitative correspondence with common sense.
 - 1. Aristotelian logic should be included.
- III Self consistency of the plausibility value system:
 - 1. If a conclusion can be reasoned in several ways, their results must agree.
 - 2. Equivalent knowledge states are represented by equivalent plausibilities.
 - 3. All available information must be included in any reasoning.

Convention: C = "A is more plausible than $B" \Rightarrow \pi(A|C) > \pi(B|C), \pi(\overline{A}|C) < \pi(\overline{B}|C)$ $D \xrightarrow{\text{update}} D' \text{ with } \pi(A|D') > \pi(A|D) \text{ and } \pi(B|AD') = \pi(B|AD)$ $\Rightarrow \pi(AB|D') \ge \pi(AB|D), \pi(\overline{A}|D') < \pi(\overline{A}|D)$

1.3.2 The Product Rule

Decomposition of AB|C = "A and B given C"

- a) Decide whether *B* is true under *C* by specifying π(*B*|*C*)
 b) If this is the case, decide if *A* is also true by specifying π(*A*|*BC*).
- 2. a) Decide whether A is true under C by specifying $\pi(A|C)$
 - b) Given A, decide if B is also true by specifying $\pi(B|AC)$

Desideratum III.1 $\Rightarrow \exists$ plausibility function f(x, y) = z:

$$\pi(AB|C) = f(\pi(B|C), \pi(A|BC)) = f(\pi(A|C), \pi(B|AC)).$$

Convention/desideratum II: f(x, y) continuous and monotonic in both x, y. Decomposition of ABC|D

$$f(f(x,y),z) = f(x,f(y,z)).$$

Cox (1946): \exists transformed plausibility system ω :

$$\omega(f(x,y)) = \omega(x) \omega(y) \text{ or } f(x,y) = \omega^{-1}(\omega(x) \omega(y)).$$

Product rule: $\omega(AB|C) = \omega(A|BC) \omega(B|C) = \omega(B|AC) \omega(A|C)$.

1.3.3 True and False

True: assume "A certain given
$$C$$
" = " $C \Rightarrow A$ "
 \Rightarrow (i) $AB|C = B|C$, (ii) $A|BC = A|C$
 $\omega(B|C) \stackrel{(i)}{=} \omega(AB|C) = \omega(A|BC) \,\omega(B|C) \stackrel{(ii)}{=} \omega(A|C) \,\omega(B|C)$ true for any B
 $\Rightarrow \omega(A|C) = 1$

False: assume "A is impossible, given
$$C$$
" = " $C \Rightarrow \overline{A}$ "
 \Rightarrow (iii) $AB|C = A|C$, (iv) $A|BC = A|C$
 $\omega(A|C) \stackrel{(iii)}{=} \omega(AB|C) = \omega(A|BC) \omega(B|C) \stackrel{(iv)}{=} \omega(A|C) \omega(B|C)$ true for any B
 $\Rightarrow \omega(A|C) = \begin{cases} 0 \\ \infty \end{cases}$ [solution $\omega(A|C) = -\infty$ ruled out by the special case $A = B$]

plausibilities $\omega \in [0, 1]$, implausibilities $\omega' \in [1, \infty]$, related by $\omega = \frac{1}{\omega'}$

Convention: plausibilities $\omega \in [0, 1]$ $\omega(A|B) = 0$ expressing *A* is false given *B* $\omega(A|B) = 1$ expressing *A* if true given *B*

1.3.4 Negation

Aristotelian logic:

- ► A is either true or false
- ► $A\overline{A}$ is always false
- ► $A + \overline{A}$ is always true

Negation function $S: [0,1] \rightarrow [0,1]$

 $\boldsymbol{\omega}(\overline{A}|B) = S(\boldsymbol{\omega}(A|B)),$

S monotonically decreasing, S(0) = 1, and S(1) = 0, Cox (1946): consistency requires

$$S(x) = (1 - x^m)^{1/m} \qquad x \in [0, 1], \ 0 < m < \infty.$$
(1)

$$\Rightarrow \omega(\overline{A}|B) = S(\omega(A|B)) = (1 - \omega^m(A|B))^{1/m}$$
(2)

$$\omega^m(\overline{A}|B) = 1 - \omega^m(A|B) \tag{3}$$

sum rule: ω^m(A|B) + ω^m(A|B) = 1
 product rule: ω^m(AB|C) = ω^m(A|BC) ω^m(B|C) = ω^m(B|AC) ω^m(A|C), ω^m → P

1.4 Probability

Convention: plausibility system with exponent m = 1 defines **probabilities**

$$P(x) = \boldsymbol{\omega}^m(x)$$

1.4.1 Probability system

P(A|B) = "probability of A given B"

product rule:	P(AB C) = P(A BC)P(B C) = P(B AC)P(A C)
sum rule:	$P(A B) + P(\overline{A} B) = 1$

Probabilities can be based on

- logic (extended to uncertainty)
- relative frequencies of events (frequentist definition)

$$P(\text{specific event} \mid \text{generic event}) = \lim_{n \to \infty} \frac{n(\text{specific event})}{n(\text{generic event})}$$

- set theory (Kolmogorov system)
- consistent bet ratios (de Finetti approach)

1.4.2 Marginalization

 $P(A,B|C) \xrightarrow{\text{marginalization}} P(A|C)$, note new notation A,B := AB for "and" (i) options B and \overline{B} , exclusive ($B\overline{B}$ always false) and exhaustive ($B + \overline{B}$ allways true):

$$P(A,B|C) = P(B|AC)P(A|C)$$

$$P(A,\overline{B}|C) = P(\overline{B}|AC)P(A|C)$$

$$\Rightarrow P(A,B|C) + P(A,\overline{B}|C) = \underbrace{\left[P(B|AC) + P(\overline{B}|AC)\right]}_{1}P(A|C) = P(A|C)$$

 $P(A|C) = P(A,B|C) + P(A,\overline{B}|C)$ is "B-marginalized probability of A"

(ii) options $\{B_i\}_{i=1}^n$ in *I*, mutually exclusive $(B_iB_j|I \text{ false for } i \neq j)$, exhaustive $(\sum_i B_i|I \text{ true})$:

$$P(A|I) = \sum_{i=1}^{n} P(A, B_i|I) \text{ is } B\text{-marginalized probability of } A \text{ given } I$$
(4)

Notation: P(A) = P(A|I), P(A|B) = P(A|BI) if context *I* is obvious Warning: if context is not obvious <u>confusion is guaranteed</u>.

End