Sampling Torsten Enßlin – MPI für Astrophysik

Outline

Signal Reconstruction vs Processing Frequentist Sampling Bayesian Sampling

Signal Reconstruction & Processing

Signal processing: Signal → Data → Operation → Result ← Verification

Signal reconstruction: Process \rightarrow Signal \rightarrow Data Prior \rightarrow Reconstruction \leftarrow

Frequentist Sampling

Frequentists regard data to be generated in repeatable random experiments.

Statistics and sampling is performed only over repeated data generation processes.

Bayesian Sampling

Bayesian regard data as given and fixed.

Looking at counter-factual data does not provide information on signal.

Sampling is done over the unknown signal according to its posterior probability $\mathcal{P}(s|d) = \mathcal{P}(d,s)/\mathcal{P}(d)$.

Goal is to calculate posterior expectation values: $\langle f(s) \rangle_{\mathcal{P}(s|d)} = \int ds \,\mathcal{P}(s|d) \,f(s)$ $= \frac{\int ds \,\mathcal{P}(d,s) \,f(s)}{\int ds \,\mathcal{P}(d,s)}$

Uniform Sampling

Rejection Sampling

Metropolis Hasting Sampling s_2 $\mathcal{P}(d,s)$

S -

Hamiltonian Sampling

Metropolis Hasting Sampling

Uniform Sampling

Rejection Sampling

Metropolis Hasting Sampling s_2 $\mathcal{P}(d,s)$

S -

Hamiltonian Sampling

